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Introductiono The problem studied in this paper is that of 

obtaining optimum trajectories, such as the one for effecting 

interception of a target following a known course above the sen-

sible atmosphere, with minimum fuel consumption, or in minimum 

timeo A procedure is given for determining the trajectory on a 

digital computer, and some conditions are given for the corres

ponding optimum trajectorieso The methods apply generally to 

problems wherein the range and time are not too great . and the 

terminal velocity is irrelevanto 

An essential feature is in the use of the adjoint system of 

differential equations as defined by Go Ao Blisso A somewhat 

novel feature is in the use of direct methods and an optimizing 

principle in determining the trajectorieso A simplification of 

the differential equations is effected by using the acceleration 

rather than the mass as a variableo 

The steering equation, which is well known, is a simple con

sequence of the optimum principle in control theory which has 

received considerable attention in this country and in Russia re-

centlyo The throttling relation, also obtained from an optimum 

principle, is apparently not generally known: in problems where 

the energy available is limited, the energy input is to occur 
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when a vector defined by the adjoint system of differential 

equations is a maximum in magnitudeo These principles reduce 

the problem to the solution of a three-point boundary problem . 

The following simplifying assumptions are made. The action 

takes place above the atmosphere so that aerodynamic forces are 

negligibleo The trajectory of the missile is assumedto lie in 

a plane containing the center of the earth so that the trajectory 

is two dimensional, to reduce the number of variableso 

1. Basic equationso The equation of motion of a rocket in a 

gravitational field, subject to no outside forces, may be writ

ten as 
00 

[ 1] r = g + a, 
where 

...,. 
r is the position vector, -g is the acceleration due to 

gravity, a is the acceleration due to thrust, and a dot (
0

) ov~ 

a variable indicates its time derivativeo We may write 

(2] a = c 0me/(l ... m)~ 
where m is the ratio of the mass of fuel which has been consumed 

to the initial gross mass of the rocket -+ 
e is the unit vector 

in the dlrection of the thrust 7 and c 0 is a constanto 

A useful kinematic relation connecting the acceleration and 

the fuel consumption is the following 

[3] I
t t 0 

a dt = c 0J ~lm t = -c 0ln(l=m) o 
0 0 -m 

Since the fuel consumed is prop6rtional to m and ln(l~m) is a 

monotonic function of m, conditions involving the final value of 

the mass may be rephrased in terms of the integral of the accelera= 

tion, subject to the constraints on the size of 
0 

mo For prac tical 

purposes we may take 0 

m as bounded above by some constant 
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and bounded below by zero, and it may be chosen anywhere on or 

between these limits, so long as any fuel remains. 

The equations of motion then have the form 
oe 
x = g1 + a cos p 

[ 4] {00 
y = g2 + a sin p , 

where we may think of g1 as ~cgx/r 3 , with cg a constant and 

r 2 = x2+ y2, and g2 as ~cgy/r 3 ; these equations may be refined 

or simplifiedo 

To get the needed formulas, let us multiply equations [4] 

through by two new variables u,v, which are unspecified so 

far, and integrate formally to get 

T 
[5] [[u(x -g1 ~a cos p) + v(y =g2 ~a sin p)]dt = 0 , 

·o 

where x,y are any solutions to [4]o 

Let us consider also a neighboring path whereon the original 

equations are satisfiedo For the first variations, equation (5] 

becomes 

T 
(6] Jo [u(6~ - g1xox coog1ycy coo ca cos p + a cp sin p) 

g2xcx coog2yoy oa sin p a op cos p)]dt = 0; 

subscripts denote partial derivatives g1x = og 1/ax, etco If 

we integrate by parts, this may be rewritten 

[7] 

+ 

here 

t1+ 
[uox - ucx + voy - vcyt + [a(u cos p + v sin p) J ot1 

t1-

ca(u cos p + v sin p) 

-a cp(-u sin p + v cos p)]dt = 0; 

is a symbol for any time or times when -a is 
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discontinuouso 

Now, to simplify equation [7], let us choose u,v as solu

tions to the system of differential equations 
00 

0 {u - g1xu g2xv = 
(8] 

GO 

v g1yu g2yv = 0 ; 

this choice of u,v eliminates the variations of the dependent 

variables x,y from the integral in (7]o Equations [8] are 

called adjoint to the variational equations corresponding to 

(4]; in general, it is an integration by parts and setting to 

zero the coefficients of terms involving the dependent varia-

bles which determines the adjoint systemo Let us further choose 

the solutions so that u{T) = v{T) = Oo Equation (7] is then 

a fairly general relation connecting the variations of the end 

values of x,y with the variations of the control variations 

a,p for any particular fixed value T and any particular trajec-

tory. 

2o Variations of dependent variableso If we further choose the 

solution u1 ,v1 to [8] such that 
0 

(9] t1 = -l 
v 1 = o, 

and if all of the initial values are given, equation [7] becomes 

( J [ Jt + 10 ox{T) = - a(u1cos p + v1sin p) t 1 ot1 + 
1-

T +I [oa(u1 cos p + v1sin p) +a cp(-u1sin p + v1cos p)]dt; 
0 

similarly, if u2(T) = o, v2{T) = -1, 
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T 
+ tt6a(u2 cos p + v2 sin p) +a 6p(-u2 sin p + v2 cos p)]dto 

These are the essential equations for variation and control, 

since they express the effect on the terminal values of x,y 

of small changes in the control variables a,po 

It will be necessary to have a fundamental set of solutions 

to equations [8]; choose, to be definite, 1 1 2 we may u ,v ,u ,v 
3 3 4 4 

u ,v ,u ,v' such that 

u1(o) = 17 v1 (0) = o, u1 <o) = o, v1 <o) = 0 

u2(o) = o, v2(0) = 1, u2<o) ::: o, v2<o) = 0 
[12] 

u3(o) = 0' 0 0 0 

. u4 (o) = 0' 0 0 0 v4 <o) = 1 0 

Then, for any particular trajectory and any time T, every 

solution is a linear combination of these, and we may write 

[13] 
{ui = t cijuj 

v. =\c .. vj , 
1 L 1J 

1 

i = 1,2 

for the proper choice of the cvso 

2 , 

3o Maximizing principleo It is a property of extremals in nor

mal problems that they furnish a maximum to an integral and that 

this is done by maximizing the integrand; this may be taken as 

the characteristic of an extremal as followso 

Let us write [5] in the alternate form 

T 
[14] [uX- ii.x + vY - Vy]~ + .b (xU - ug 1 + yV - vg2 )dt 

= 
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Now suppose we have selected - - -1 w = ui + VJ in some way, where 

u,v satisfy (8] and w = lw(t)j is a diminishing function of 

t with w(T) = Oo Without regard for a reason, let us consider 

the problem of maximizing the integral on the right in [14], by 

choosing -a properlyo It most satisfy the constraints that (i) 

0 ~ a ~ ~ax' where amax is a known function of t, and (ii) 

T 
[15] Ja dt ~ c, a given constant; 

0 

C is by [3] a measure of the fuel consumptiono For amax we may 

take the function 

[16] amax = lesser[c 9mmaxf<l=mmaxt), cmmaxf<l~mmax)], 

where mmax'mmax are the maximum values of m,m, determined 

by the rocket mechanismo 

We see that to maximize the integral in [14] it is neces-

sary and sufficient that (i) - -a is parallel to w, so that 

[17] tan p = v/u 

(the proper branch of p chosen) and ( ii) 

[18] a = {amax ' 0 ~ t ~ t1 

t 1 ~ t ~ T, 0 ' 

t1 being chosen so that equation [15] is satisfiedo 

An outline of the proof is given here; it is given in 

detail in (1, section 5)o Consider the path defined above and 

any other path; let the functions for a,p be denoted by A,P 

on the second patho A must satisfy the constraints (i),(ii) 

specified on a above, so that 

T 
[ 19 ] I A d t ~ c 0 

0 

It is seen that 
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J
.t1 It1 = (a -A)w dt + A(l-cos[p-P])w dt 
0 max 0 

T - J A w cos(p-P) dt o 
t1 

The sum of the first and third terms is positive or zero and 

the second term is positive or zeroo This establishes that the 

path just described maximizes the integralo 

4o Attaining a fixed point in specified time with minimum fuelo 

Let us consider, as an example~ the problem of determining a 

trajectory to attain a specified point Xf,Yf in a specified 

time T with a minimum of fuel~ assuming that all of the initial 

conditions are giveno We will first take up a routine for 

finding the trajectory and then show how it satisfies certain 

conditions which can be checkedo 

Let us guess initial values for the solutions u 1 ,v 1 and 

u2 ,v 2 , solutions to [8], and a linear combination of these 

[20] {u = u1 cos G + u2 sin G 

v = v1 cos G + v2 sin G, 

where G is a number to be foundo Each of the quantities should 

have an iteration number, since they will be in an iterative com= 

putational routineo Now let 

[ 17] tan p = u/v , 

properly choseno Let us guess also t 1 ; maximum thrust is to be 

applied until time t 1 , and thrust is zero thereaftero 

Now compute the corresponding trajectoryo It will ~ad to 

terminal values x(T),y(T), which are in error by amounts 

Xf-x(T),Yf-y(T)o Compute simultaneously a fundamental set of 

solutions ui,vi to the adjoint system of differential equations 

[8], and two further integrals which occur later in equation [22]o 
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[21] 6p = 6G(u 1 v2 - u2v 1 )/([u] 2+[v] 2)o 

The relations for the variations of the end values then become 

[23] 

Now set 

{6x(T) = xf 

6y(T) = Yf 

x(T) 

y(T) ' 

substitute into [22], and solve for 6t 1 ,6Go This gives corrected 

values of t 1 ,G for the next roundo 

From the fundamental set of solutions corrected 

estimates are made for the initial vclues of u 1 ,v 1 ,u2 ,v2 and 

their derivativeso All of the initial values are then available 

for starting the next iterationo 

This routine is continued until some convergence criterion 

is satisfied: for example one might require 

(24] E = (Xf ~ x(T))2 +(Yf ~ y[T])2 

to be less than some preassigned numbero 

If the routine given above converges, we have found a 

trajectory which effects at least a stationary value for the 

fuel consumption compared with paths in some neighborhoodo For 

if we consider neighboring paths in equation [14], we see that 

the first variation of the left side vanishes, by virtue of 

equations [8] and the fact that 6x(0),6y(0),6x(0)~6y(0) , 6x(T), 

6y(T),u(T),v(T) all vanisho But the right side of the equation 
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is positive for every admissible variation of the acceleration, 

as was shown in section 3o Hence there is no neighboring path 

whose first variations do not vanish which requires the same 

or less fuel. If gravity can be approximated as a linear func

tion of position, this also establishes the sufficient conditions 

for an absolute minimum [see (1), section 5]o 

5. Variations of terminal time; minimum fuel consumptiono Now 

suppose that the terminal time T may varyo The change in the 

end values of x,y are 

[25] 
{OX = i(T)OT + Ox(T) 

6Y = y(T)6T + 6y(T) o 

There are corresponding equations for the terminal values of 

etco; in these equations T should have an iteration subscript, 

being the approximation associated with the last trajectory runo 

Since there are three variables t 1 ,T,G, and only two equa-

tions for xf,Yf ' a further relation is requiredo If we are in-

teres ted in minimum fuel consumption, then t 1 must be a minimumo 

Equation [7] may be rewritten 

[26] (-u6x- v6y)T = [a(u cos p + v sin p)]t
1
_6t 1 , 

if terms that must vanish are omittedo 

If we consider two neighboring trajectories, each of which 

effects interception of a target whose coordinates are Xf(T) , 

Yr(T), then 6x(T) = (Xr=x)6T, 6y(T) = (Yr-y)6T, and [26] 

becomes 

[27] 
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Hence, for minimum fuel consumption, 

these two vectors must be perpendicular; apparently this is 

a fairly general condition associated with minimum fuel con

sumptiono This condition allows a direct determination of the 

angle Go This in turn defines 6G as the difference of the 

two successive values of Go 

The value for 6x(T) which must be used in the iterative 

routine is 6x(T) = Xf(T) - x(T) + (Xf = x)T6T, and the equa

tions for corrections to T,t1 are 

[29] 
{Xf(T) - x(T) = - <Xr - Xl6T + 6x(T) 

Yf(T) - y(T) =- (Yf y)6T + 6y(T), 

where 6x(T),6y(T~ linear in 6G,6t 1 , are given by equations 

[22]o Since 6G is already determined, these equations [29] 

then yield 6T,6t1o 

The iteration is continued until some convergence criterion 

is satisfiedo It must also be checked that w is a decreasing 

function of tin~e; actually all that is required is that 

w(t) > w(t1) when t < t 1 and w(t) < w(t1) when t > t 1o It 

should be pointed out that the relation involving the end con

dition, equation [28],is only a necessary conditiono There do 

not seem to be any simple ways to ensure that a minimum, rather 

than a maximum is obtained; in the case of constant gravity and 

a ballistic target, the trajectory always furnishes a minimumo 

6. Commentso The procedure seems to furnish a rather simple ex

tension of the procedures which Bliss (3) introduced in Ballistics 9 

for calculating differentialso There seems to be only one 
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peculiarity of the trajectories, namely that the vector -w 

is decreasing in magnitudeo 

If a minimum time of interception is desired, then set 

t 1 = lesser(t 1max'T)o Equations [29] then furnish the changes 

6T,6Go It is necessary to make the first estimate of G in a 

certain range, else the routine may not converge, or may 

converge to the trajectory which takes maximum time (l,p l?)o 

The use of the acceleration rather than the mass as ,a varia

ble simplifies the differential equations, since the mass enters 

non linearly in the differential equationso On the other hand, 

the bound on a is a function of time, not a constant, in the 

above example, and in more general cases it does not seem possible 

to express the bounds explicitly as functions of timeo 

There seem to be two general principles associated with 

optimum trajectories where there is a limited amount of energy 

available, so that throttling must occur in some form or anothero 

The first of these is that the orientation of the energy-input 

vector, the acceleration in this case, is such as to maximize 

its projection onto the adjoint vectoro The second is that the 

energy is to be expended at a time when the adjoint vector is 

largeo The first condition above leads to the w~ll-known steering 

criterion, apparently first published by Lawden [see (2) for refer

ences]o The second is apparently equivalent to the Weierstrass 

condition in some problems, though as expressed above , it has no 

analog in classic calculus of variationso 

The method of solution~ using procedures due to Bliss (3),(4), 

(5), has the nice feature that, should the actual trajectory 

deviate in some way from the planned trajectory, the same equa~ 

tions for the variations can be used to determine a corrective 
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thrust scheduleo The vectors may be considered the 

impulse response vectors for x(T),y(T) respectively, since 

the dot product --eow. 
l. 

gives the change in the terminal value 

of the corresponding variable due to a unit impulse in the 

direction of -e a 

In the computing which has been done, a modified Runge

Kutta routine was used which has the desirable feature that it 

is easy to change the time intervals, which must be done in the 

neighborhood of t 1 ,To No convergence problems have been en= 

countered in the ballistic missile interception problema On 

the other hand it is apparently necessary to make a close initial 

estimate in a corresponding orbital transfer problema The values 

obtained from the case where -g varies at most linearly should 

furnish reasonble starting values , should convergence be a problema 

Considerable attention has been attracted recently by the 

maximum principle, due largely to papers by Pontriagin (6)a To 

the author this seems to be the fundamental way to approach prob-

lems in the calculus of variations; the Euler equations 

are derived by effecting a stationary value for an integral 

through the e6 processes of calculusa In most problems there 

seems to be no practical new information in the maximum prin-

ciplea Superficially the system of differential equations is 

of lower order when the maximum principle is taken as the basic 

concepta In the numerical solution 9 the last Euler equation [17] 

may be solved by Newton ' s method , which depends on derivatives 

so that it is equivalent to an additional differential equationo 

Several authors have dealt~with the mass and handled the 

bounds on a 
m by introducing a new variable ~ such as in the 
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equation 

m = mmax sin2 ¢o 

In simple problems, both the mathematical theory and the pro~ 

gramming of the numerical solution are simpler in terms of the 

original variables; the logical decisions are of a type built 

into all general-purpose digital computerso 

It seems to the author that one of the most important 

features in recent control theory rests on the use and inter~ 

pretation of the· adjoint system of differential equationso 

As remarked earlier, the foundations were laid by Bliss, with 

more recent applications and contributions by Drenick (7), 

Tsien (8), Breakwell ( 9 ), and Tyndall (10), among otherso The 

mathematical contribution to calculus of variations is in the 

numerical procedures for solving two~(and more) point boundary~ 

value problems o~ high=speed computerso Another method of solu

tion, the gradient method of Kelley (11) also utilizes the 

adjoint systemo It is sometimes stated that the adjoint equa

tions (8] are necessary conditions for an extremalo This seems 

a logical error: the variables u,v are introduced by the 

mathematician, not implicit in the problem~ and in turn are 

chosen to satisfy [8], because that choice simplifies the inte~ 

gral in equation (7]o Dro So Ross usually brings out this facto 

In problems such as the above~ the construction of the functional 

of Pontriagin [(6), p 16] is equivalent to solving the three~ 

point problem involving the original system of equati ons and 

the adjoint systemo 
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